Potential Action-Specific ARARs, Criteria, Advisories and Guidance (Cont'd) Table 2-3

Authority/Action	Requirement	Status	Regulation Synopsis	Consideration in RIJFS
RCRA/Sediment	Federal - Resource Conservation and Recovery Act (RCRA) - Criteria for Classification of Solid Waste Disposal and Practices (40 CFR Part 257)	Potentially Relevant and Appropriate	Solid wastes containing PCBs greater than 10 ppm must not be incorporated into the soil (or mixed with surface soil) or applied to land or pasture crop production.	This criterion may have to be addressed for any debris, soil or sediments containing greater than 10 ppm of PCBs.
Sediment	State - Hazardous Sites Cleanup Act, 25 PA Code, Chap. 260-270	Potentially Relevant and Appropriate	This regulation determines the appropriate methodology which must be followed at hazardous waste sites, including monitoring requirements and cleanup criteria.	Development of cleanup criteria for the Cottman Avenue site may have to consider the requirements of this Act.
PA/Soil	State - Hazardous Sites Cleanup Act, 35 PA Statute, Chap. 6020	Potentially Relevant and Appropriate	Creates a state program independent of the Federal Superfund Program for the cleanup of hazardous waste sites.	Regulations for implementation of this program have not yet been developed.
PADER/Soil	State - (Guidance) Department of Environmental Resources Cleanup Standards for Contaminated Soils	To Be Considered	The DER's generic soil cleanup standards for organic and inorganic contaminants are based upon cancer and non-cancer direct contact risks and the contaminant's likelihood to impact groundwater.	The DER's soil cleanup standards may be used to develop remediation technologies and action levels for groundwater treatment at the Cottman Avenue Site.
CSL/Surface Water	State - Clean Streams Law, 25 PA Code, Chap. 93, 95 and 101	Potentially Relevant and Appropriate	The Clean Streams Law regulations provide for the protection of Pennsylvania waters. They set levels for discharge to surface waters such as lakes, ponds, rivers and streams.	Pennsylvania Clean Streams Law regulations may be used to develop appropriate remediation goals for any discharge to the Delaware River.
				Personal varieties and the second sec

AR301199

Potential Action-Specific ARARs, Criteria, Advisories and Guidance (Cont'd) Table 2-3

Authority/Action	Requirement	Status	Regulation Synopsis	Consideration in RL/FS
CWA/Surface Water	Federal - CWA - Ambient	Potentially	AWQC are developed under the Clean Water	AWQC may be used to
	Water Quality Criteria	Relevant and	Act (CWA) as guidelines from which the	characterize risk to freshwater
-	(AWQC) Protection of	Appropriate	states develop water quality standards.	aquatic life resulting from
١,	Freshwater Aquatic Life,		CERCLA 121(d)(2) requires compliance	discharge of groundwater to the
-	Human Health, Fish		with such guidelines when they are relevant	Delaware River.
	Consumption		and appropriate rather than an MCL, when	
			protection of aquatic organisms is being	
-		•	considered at a site. Acute and chronic	
-			exposure levels are established for the	
			protection of aquatic life. For the protection	
-			of human health, additional health-based	
			criteria have been developed for 95	-
			carcinogenic compounds; these criteria	
			consider exposure to chemicals from	
-			drinking water and/or fish consumption	

Page 12 of 12

DRAFT

Contaminant	Medium / Exposure Pathway	Exposure Profile	Exposure Setting
Chromium VI and compounds Chromium VI and compounds	Particulate Particulate	Carcinogenic risk Carcinogenic risk	Resident Adult (adult): Ambient Air Inhalation Resident Adult (child): Ambient Air Inhalation
Polychlorinated biphenyls (PCBs)	Surface soil (courtyard)	Carcinogenic risk	Future Industrial Worker: Ingestion
Arsenic Beryllium and compounds Polychlorinated biphenyls (PCBs)	Surface soil (outside courtyard) Surface soil (outside courtyard) Surface soil (outside courtyard)	Carcinogenic risk Carcinogenic risk Carcinogenic risk	Future Industrial Worker: Ingestion Future Industrial Worker: Ingestion Future Industrial Worker: Ingestion
Polychlorinated biphenyls (PCBs) 2,3,7,8-TCDD (dioxin)	Subsurface soil (outside courtyard) Subsurface soil (outside courtyard)	Carcinogenic risk Carcinogenic risk	Future Construction Worker: Ingestion Future Construction Worker: Ingestion
2,3,7,8-TCDD (dioxin)	Particulate	Carcinogenic risk	Future Construction Worker: Ambient Air Inhalation
Polychlorinated biphenyls (PCBs)	LNAPL	Carcinogenic risk	Future Construction Worker: Dermal Contact
2,3,7,8-TCDD (dioxin) 2,3,7,8-TCDD (dioxin)	Rip-rap sediment Rip-rap sediment	Carcinogenic risk Carcinogenic risk	Recreational Boater (adult): Ingestion Recreational Boater (child): Ingestion
Polychlorinated biphenyls (PCBs) Polychlorinated biphenyls (PCBs)	Ingestion of fish Ingestion of fish	Carcinogenic risk Carcinogenic risk	Recreational Boater (adult): Ingestion Recreational Boater (child): Ingestion

· ,			
Policy Federal Guidance I		Federal Guidance ¹	
Policy Value (mg/kg)		-	
Location	1,451	WF 10/	
Maximum Detected Concentration (mg/kg) 140	196	0./.	
Medium Surface Soil	Sediment		!
POLICY BASED Confaminant Total PCBs	Total PCBs		

PCB values taken from "Guidance on Remedial Actions for Superfund Sites with PCB Contamination", U.S. EPA, August 1990. The value for surface soil is for industrial areas, and the value for sediment is for aquatic environments.

Human Health Risk - Based Interim Target Cleanup Levels (ITCLs) Table 2-6

Interim Target Cleanup Lavels (ITCLs) ³ (ppm)	2.53E-07 ⁴ 3.62E-07 ⁴	2.23	9.82 4.00 2.22	18.5	4.76E-09 ⁴	0.182	0.005	0.005
Risk Estimate ²	5.89E-07 4.12E-07	4.14E-05	6.51E-07 2.75E-07 6.79E-07	1.97E-05 4.56E-03	4.56E-05	6.00E-03	1.19E-05 2.78E-05	2.62E-04 1.53E-04
Exposure Point Concentration or RME conc. ¹ (ppm)	1.49E-07 ⁴ 1.49E-07 ⁴	92.4	6.39 1.10 1.51	365 4.35	2.17E-07 ⁴	1090	5.91E-02 5.91E-02	1.27 1.27
Exposure Setting	Offsite Adult (adult): Ambient Air Inhalation Offsite Adult (child): Ambient Air Inhalation	Future Industrial Worker: Ingestion	Future Industrial Worker: Ingestion Future Industrial Worker: Ingestion Future Industrial Worker: Ingestion	Future Construction Worker: Ingestion Future Construction Worker: Ingestion	Future Construction Worker: Ambient Air Inhalation	Future Construction Worker: Dermal Contact	Recreational Boater (adult): Ingestion Recreational Boater (child): Ingestion	Recreational Boater (adult): Ingestion Recreational Boater (child): Ingestion
Redium / Exposure Pathway	Particulate Particulate	Surface soil (courtyard)	Surface soil (outside courtyard) Surface soil (outside courtyard) Surface soil (outside courtyard)	Subsurface soil (outside courtyard) Subsurface soil (outside courtyard)	Particulate	NAPL	Rip-rap sediment Rip-rap sediment	Ingestion of fish Ingestion of fish
Contaminant	Chromium VI and compounds Chromium VI and compounds	Polychlorinated biphenyls (PCBs)	Arsenic Beryllium and compounds Polychlorinated biphenyls (PCBs)	Polychlorinated biphenyls (PCBs) 2,3,7,8-TCDD (dioxin)	2,3,7,8-TCDD (dioxin)	Polychlorinated biphenyls (PCBs)	2,3,7,8-TCDD (dioxin) 2,3,7,8-TCDD (dioxin)	Polychlorinated biphenyls (PCBs) Polychlorinated biphenyls (PCBs)

¹ Exposure point concentrations are taken from the Human Health Risk Assessment. RME denotes the reasonable maximum exposure.

² Risk estimates are taken from the Human Health Risk Assessment.

² V Since that it is a second of the concentration in mg/m³ Concentra

Table 2-7 Ecological Risk - Based Interim Target Cleanup Levels (ITCLs)

Contaminant	Medium	Organism	Interim Target Cleanup Level (ITCL) (ppm)
Total PCBs	LNAPL	Aquatic Species ¹	NA
Total PAHs	LNAPL	Aquatic Species ¹	NA ·
Total PCBs	Sediment	Aquatic Species	0.05
Total PAHs	Sediment	Aquatic Species ¹	32
4,4' DDD	Sediment	Terrestrial Species ²	0.002

ITCL taken from the draft Aquatic Ecological Risk Assessment prepared by NOAA and is based on NOAA Effects Range-Median (Long and Morgan, 1990).

ITCL taken from the draft Terrestrial Ecological Risk Assessment prepared by EPA and is based on EEQs.
NA Not Applicable

ARAR and Federal Policy - Based Interim Target Cleanup Levels (ITCLs) Table 2-8

Interim Turget Cleanup Levels (ITCLs) (mg/kg)	10	_
Policy Value (mg/kg)	101	
Location	TB2S	MF107
Maximum Detected Concentration (mg/kg)	140	19.6
As Medium	Surface Soil	Sediment
POLICY BASED Contaminant	Total PCBs	Total PCBs

PCB valuesI taken from "Guidance on Remedial Actions for Superfund Sites with PCB Contamination," U.S. EPA, August 1990. The value for surface soil is for industrial areas, and the value for sediment is for aquatic environments.

Development of Remedial Action Objectives, and dentification and Screening of Technologies

6698/haz/revision/work/table2-8

Table 2-9 Background Level - Based Interim Target Cleanup Levels (ITCLs)

Contaminant	Background Soil Concentration-based ¹ ITCLs ² (mg/kg)
Arsenic	<0.1 - 73
Beryllium	<1 - 7
Chromium	1 - 1,000
4,4'-DDD	0.4 - 2703

Background soil concentration-based ITCLs are only applied when no other ITCL for a contaminant is available. Source: "Element Concentration in Soils and Other Surficial Materials of the Conterminous United States" 1984.

² Interim Target Cleanup Levels (ITCLs).

Background concentrations based on the document "Sediment Contaminants of the Delaware River Estuary". Estuary Toxics Management Program Delaware River Basin Commission, March 1993.

Summary of Interim Target Cleanup Levels (ITCLs) by Medium **Table 2-10**

Target Cleanup Level (ppm)	
Background Soil Level-Based ITCL (ppm)	1 - 1,000
Policy-Based ITCL (ppm)	
Ecological Risk Based ITCL (ppm)	
Human Health Risk-Based ITCL (ppm)	3.62E-07 ¹
M: PARTICULATES Compound	1 VI and compounds
MEDIUM: C	Chromium

2				
Target Cleanup Level (ppm				1
2				
-			1	
3				
-		\sim	٠, ا	2
#	-	3		0.002
.				0
70				
•				
3			l	
22				
	-			
***************************************		-		
Background Sediment Level- Based ITCL (ppm)				
₩ 🥺 💆				
		l i	0	
8-12			0.4 - 270	l
1 to 2 C			1	
1 4 8 E		ľ	4.	•
# E +			0	
# 7 %		i		
Ø ₹				
	1			ľ
₩ =				
3 5				
P	_	1	1	:
Policy-Based ITCL (ppm)		١,	•	•
# 9				
2				
3.		i	İ	
25.2				
2 0_		1		
# E #	2	١_,	2	
Ecological Risk- Hased ITCL (ppm)	0.05	32	0.002	<u> </u>
₩ # ⊕	0		0	
75.2		l	i	l
2 "				
*			l	
	_	<u> </u>	Ь.	<u> </u>
				l

対象				
₩ #		1	1	1
# = =		l		1
Human Health Ri Based ITCL (ppu		١.	۱.	0.002
2 2	1			١ĕ.
		1	l	0
47		1		l
# ₹	l	l		[
22		l		1
-			l	
			_	
	l _			
IF.				1
		l		
慢业	•	1	١	١
	l	1	l	l
\$ 0.00 (0	ı	1	1	_
		1	l	15
SED	i			ш
: SED	ş	4s	l	10.5
Mr. SED Jompour	CBs	4Hs	٥	TC
IUM: SEDIM Compound	PCBs	PAHs	00	8-TC
DIUM: SED	al PCBs	al PAHs	-DDD	7,8-TC
deditim: Sediments Compound	Cotal PCBs	Fotal PAHs	,4'-DDD	2,3,7,8-TCDD

	_	
Target Cleanup Level (ppm)	10	
Background Soil Level-Baned ITCL (ppm)		
Policy-Bused ITCL (ppm)	10	
Ecological Risk Based ITCL (ppm)		
Human Health Risk-Bared ITCL (ppm)		
MEDIUM: SURFACE SOIL. (Courtyard) Compound	Total PCBs	

Target (Icenup Level (ppm)		******		
Background Sail Target Cl Level-Based ITCL Target Cl (ppm)	<0.1 - 73	<1 - 7	1	
	<0.1	<1	•	
Policy-Based ITCL (ppm)			10	
Ecological Risk Based ITCL (ppm)	***	2.5	-	
Human Health Risk-Based ITCL (ppm)	9.821	4.001	2.221	
MEDIUM: SURFACE SOIL. (Outside Courtyard) 1 Compound Ri	Arsenic	Beryllium and compounds	Total PCBs	

The values provided exceed the exposure point concentrations taken from the Human Health Risk Assessment. Therefore, the determined ITCLs have been achieved.

6698/haz/revision/wor

Evaluation of Target Cleanup Levels and Identification of Recommended Target Cleanup Levels **Table 2-11**

DRAFT

1 -	
Source	
1 A	PB1
8	٦
Sourt	
- Xe	
tup Level	
inui	
e e	
m)	
Lar.	2
ended Target Cl (µpm)	
sende	
ecommended	
Reco	
	\dashv
m)	
ede n L (pp	_ص
etic Atic (s.1)	0.03
ntra antii RC	
900 000	
eve	
rp E	
E (H	10
5.5	
ağ.	
1,	
SOIL	
ios	
RFACES	
RFA	
SUR	
M. SURF	Bs
	I PC
	Fota
	1

		4	
Source	PB	ERB ²	HHRB³
Recommended Targnt Cleanup Level (ppm)	1	32	0.002
Contract Required Quantitation Limits (CRQLs) (ppm)	0.033	0.330	
Target Cleanup Lovel (ppm)	1	32	0.002
MEDIUM: SEDIMENTS Compound	Total PCBs	Total PAHs	2,3,7,8-TCDD

PB Policy Based
 ERB Ecological Based
 HHRB Human Health Risk Based

AR301208

DRAFT
Table 2-12 General Response Actions for Surface Soil

GENERAL RESPONSE ACTIONS (for all remedial action objectives)	REMEDIAL TECHNOLOGY TYPES (for general response actions)	PROCESS OPTIONS
NO ACTION/LIMITED ACTIONS: No Action Access Restrictions Monitoring	NO ACTIONLIMITED ACTION OPTIONS: Deed Restrictions Fencing Sampling	
CONTAINMENT ACTIONS: Containment	CONTAINMENT TECHNOLOGIES: Capping	Multimedia cap, permeable cap, single media cap
	Surface Controls	Grading, revegetation
	Vertical Barrier	Cofferdam, grout curtain, sheet piling, slurry wall
REMOVAL/TREATMENT/ DISPOSAL ACTIONS:	REMOVAL TECHNOLOGIES: Excavation	Dredging, soil excavation
Removal/Disposal Removal/Treatment/Disposal	TREATMENT TECHNOLOGIES: Biological Treatment	In-situ bioremediation, land treatment
	Chemical Treatment	Dechlorination
	Fixation/Stabilization	Asphalt-based (thermoplastic) microencapsulation, lime-based pozzolan, Portland cement pozzolan, sorption, vitrification
	Physical Treatment	Dewatering, evaporation, low temperature thermal stripping, soil washing, vacuum extraction
	Thermal Treatment	Circulating bed combustor, infrared incineration, pyrolysis, rotary kiln incineration
	DISPOSAL TECHNOLOGIES: Off-site Disposal	RCRA landfill, RCRA/TSCA landfill, Subtitle D Facility
	On-site Disposal	Backfilling, non-RCRA landfill, RCRA landfill

Table 2-13 General Response Actions for Sediments

GENERAL RESPONSE ACTIONS (for all remedial action objectives)	REMEDIAL TECHNOLOGY TYPES (for general response actions)	PROCESS OPTIONS
NO ACTION/LIMITED ACTIONS: No Action Access Restrictions Monitoring	NO ACTION/LIMITED ACTION OPTIONS: Deed Restrictions Fencing Sampling	
CONTAINMENT ACTIONS: Containment	CONTAINMENT TECHNOLOGIES: Capping Surface Controls	Multimedia cap, permeable cap, single media cap Grading, revegetation
	Vertical Barrier	Cofferdams, grout curtain, sheet piling, slurry wall
REMOVAL/TREATMENT/ DISPOSAL ACTIONS:	REMOVAL TECHNOLOGIES: Excavation	Dredging, excavation
Removal/Containment Removal/Disposal Removal/Treatment/Disposal	TREATMENT TECHNOLOGIES: Biological Treatment	In-situ bioremediation, land treatment
	Chemical Treatment	Dechlorination
	Fixation/Stabilization	Asphalt-based (thermoplastic) microencapsulation, lime-based pozzolan, Portland cement pozzolan, sorption, vitrification
	Physical Treatment	Dewatering, evaporation, low temperature thermal stripping, soil washing, vacuum extraction
	Thermal Treatment	Circulating bed combustor, infrared incineration, pyrolysis, rotary kiln incineration
	DISPOSAL TECHNOLOGIES: Off-site Disposal	RCRA landfill, RCRA/TSCA landfill, Subtitle D Facility
	On-site Disposal	Backfilling, non-RCRA landfill, RCRA landfill

DRAFT
Table 2-14 General Response Actions for LNAPL

(for all remedial action objectives)	REMEDIAL TECHNOLOGY TYPES (for general response actions)	PROCESS OPTIONS
NO ACTION/LIMITED ACTIONS: No Action Access Restrictions Monitoring	NO ACTIONLIMITED ACTION OPTIONS: Deed Restrictions Fencing Sampling	
CONTAINMENT ACTIONS: Containment	CONTAINMENT TECHNOLOGIES: Capping Surface Controls Vertical Barrier	Multimedia cap, permeable cap, single media cap Dikes and berms, levees Cofferdam, grout curtain, sheet piling, slurry wall
REMOVAL/TREATMENT/ DISPOSAL ACTIONS: Removal/Disposal Removal/Treatment/Disposal	REMOVAL TECHNOLOGIES: Subsurface Drains Surface Drains TREATMENT TECHNOLOGIES: Biological Treatment Chemical Treatment Physical Treatment Thermal Treatment Oif-site Disposal	Interceptor trenches Collection drains, pumping, surface controls Enzymatic degradation, aerobic lagoons, anaerobic lagoons, packed bed reactor, PACT activated sludge, rotating biological reactor Ultraviolet photolysis Air stripping, carbon adsorption, centrifugation, dissolved air flotation, distillation, electrodialysis, filtration, flocculation, ion exchange, oil/water separation, reverse osmosis, sedimentation, steam stripping Infrared incineration, pyrolysis, rotary kiln incineration Deep well injection, POTW, RCRA TSD facility, RCRA/TSCA TSD facility

TABLE 3-1
Cost Summary for Remedial Alternative C-1: No Action

- 1	ITEM No.	COMPONENT	QUANTITY	UNIT	UNIT COST	*	ITEM TOTALS		O&M TOTALS
ſ	lA.	SHORT-TERM MONITORING (quar	terly - 2 years)						\$301,900
		Sediments	20	set	\$1,560			\$31,200	
١		Groundwater	20	set	\$1,560		,	\$31,200	}
		Surface Water	24	set	\$1,560			\$37,400	
		NAPL	12	set	\$1,560			\$18,700	
		Labor & Other Costs						\$183,400	

 SUBTOTAL ALTERNATIVE 1A
 \$301,900

 CONTINGENCY @ 15%
 \$45,285

 TOTAL
 \$347,000

PRESENT WORTH (n=2 yrs, i=5%)	\$645,000
1100021(1 (OK111(1 2)10)1 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	5045,000

ITEM No.	COMPONENT	QUANTITY	UNIT	UNIT	*	TOTALS		O&M TOTALS
1B	LONG-TERM MONITORING (annua	lly; yrs 3-30)						\$75,600
	Sediments	5	set	\$1,560		·	\$ 7,800	
	Groundwater	5	set	\$1,560			\$7,800	,
	Surface Water	6	set	\$1,560	,		\$9,400	
	NAPL	3	set	\$1,560	·		\$4,700	e
	Labor & Other Costs						\$45,900	1

 SUBTOTAL ALTERNATIVE 1B
 \$75,600

 CONTINGENCY @ 15%
 \$11,340

 TOTAL
 \$87,000

PRESENT WO	ORTH (n=28 yrs, i=5%)	\$1,176,000			

TOTAL PRESENT WORTH	\$1,821,000

TABLE 3-2
Cost Summary for Remedial Alternative C-2: Limited Action

ITEM Na.	COMPONENT	QUANTITY	UNIT	UNIT	EXTENSION	CAPITAL COST	O&M COST (annual)	TO T
2A	SHORT-TERM MONITORING						**************************************	\$30
2B ·	(quarterly - 2 years) LONG-TERM MONITORING	ŀ						0301
21)	(annually: yrs 3-30)		İ					\$75,600
2C	DEED RESTRICTIONS	1	each	\$10,000	\$10,000	\$10,000		
2D	ACCESS RESTRICTIONS* Chain Link Fence	3500	16	•		\$27,900*		\$2,500
	Miscellaneous	3300	lf	\$14	\$48,000 \$4,800			
ar.	Maintenance	1	ls	\$2,500	\$2,500	ļ	\$2,500	
2E 2F	WARNING SIGNS PUBLIC EDUCATION PROGRAM	10	each	\$100	\$1,000	\$1,000	42,500	
	TODLIC EDUCATION PROGRAM	<u> </u>	ea.	\$35,000	\$35,000	\$35,000	\$ 4,000	\$ 4,000

 SUBTOTAL ALTERNATIVE C-2
 \$73,900

 ENGINEERING @ 10%
 \$7,390

 CONTINGENCY @ 15%
 \$11,085

 TOTAL
 \$92,000

PRESENT WORTH (n=30 yrs, i=5%)	44 444
TIGESTAL MOKITT (II-20 AL2' 1=2 30)	\$2,028,000
	92,020,000

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

-

TABLE 3-3 Cost Summary for Remedial Alternative C-3: Containment

ITEM No.	COMPONENT	QUANTITY	UNIT	UNIT COST	EXTENSION	CAPITAL COST	GAM COST (annual)	OAM TOTALS
3A	SHORT-TERM MONITORING (quarterly - 2 years)							\$301,900
3B	LONG-TERM MONITORING (annually: yrs 3-30)					,		\$75,600
3C	DEED RESTRICTIONS					\$10,000	1	0,5,555
3D	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
3E	WARNING SIGNS		1			\$1,000	•	1
3F	PUBLIC EDUCATION PROGRAM		1			\$35,000		\$4,000
3G	REMOVAL AND DISPOSAL OF UST					\$451,000		1 ,,,,,,,,,
	Removal of slab	30	cy	\$ 150	\$4,500			İ
	Excavation/Removal of tank	1	C2	\$10,000	\$10,000			
	Removal/ Disposal of tank contents	10000	gal	\$16	\$160,000			
l	Backfill	180	cy	\$10	\$1,800			Ì
	Compaction	180	cy	\$ 3	\$540			1
İ	Steam-cleaning tank surfaces	4	her	\$375	\$1,500			†
	Collection/Disposal of cleaning mat'l	2500	gal	\$16	\$40,000			
	Disposal of Soil	290	tons	\$475	\$137,750	,		
	Transportation of Soil	290	tons	\$125	\$36,250			1
ļ	Miscell aneous	-	1		\$58,850			ļ.
3H	CONTAINMENT SYSTEM (SHEET PILE WALL AND	LEACHATE COLI	ECTION)			\$1,708,000		\$47,575
	Sheet Pile Wall	56000	æ£	\$15	\$840,000		\$1,000	
	Trenching	3900	cy	\$15	\$58,500			
	Backfill	6700	сy	\$10	\$ 67,000			}
1	Compaction	6700	cy	\$3	\$20,100			
	Manholes	8	C&	\$2,400	\$19,200		\$1,000	
	HDPE Collection Pipe	1800	lf	\$40	\$72,000		\$1,000	ļ
	Mobilization/Demobilization	1	is	\$60,000	\$60,000			1
	NAPL Collection and Disposal							-
	NAPL Scavenger system	6	Ca	\$9,000	\$54,000		\$37 ,650	1
	Drums	6	C2	\$25	\$150		\$ 125	į
	Drum heaters	6	CS.	\$200	\$1,200		\$1,200	
ļ	Concrete containment area	6	CO2	\$1,000	\$6,000			
	Disposal of NAPL	275	gai	\$16	,		\$4,400	
	Electrical	1	ls	\$10,000	\$10,000		\$1,200	1
	Miscellaneous				\$500,000	, i	ļ	1

SUBTOTAL ALTERNATIVE C.3 ENGINEERING @ 10% CONTINGENCY @ 15% \$2,233,000 \$223,300 \$334,950 \$2,791,000

PRESENT WORTH (n=30 yrs, i=5%)

\$5,568,000

[•] Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

Table 3-4
Cost Summary for Remedial Alternative C-4: Permeable Cap/Containment

ITEM No.	COMPONENT	QUANTITY	UNIT	COST	EXTENSION	CAPITAL	G&M COST (annual)	FAM
	SHORT TERM MONITORING					CLASE.	(annual)	
	SHORT-TERM MONITORING (quarterly - 2 years)	1	ı j	' l		1	l i	S73 COO
1	LONG-TERM MONITORING (annually: yrs 3-30) DEED RESTRICTIONS	1	,)		1	610,000	<u> </u>	\$75,600
	ACCESS RESTRICTIONS*	1	1 }		1	\$10,000 \$27,000*	ļ 1	CD 600
4D	1	1	1	' l	1	\$27,900*	ļ 1	\$2,500
4E 4F	WARNING SIGNS PUBLIC EDUCATION PROGRAM	1	1 1	'	1	\$1,000 \$35,000	1	64.000
4F 4G	EXCAVATION AND DISPOSAL OF COURTYARD	SOF	1	· .	1	\$35,000 \$617,000	1	\$4,000
40	Excavation AND DISPOSAL OF COURTYARD Excavation	SOIL	cy	\$8	\$4,800	901/,UUU	1	1
	Excavation Disposal	. 1000	tons	\$8 \$475	\$4,800	1		!
1	Transportation	1000	tons	\$475 \$125	\$125,000	T	1	1
	l ransportation Backfill	700		\$125 \$10	\$125,000	(1	1
1	Backfill Compaction	700	cy cy	\$10 \$3	\$7,000	(1	!
	Grading and Seeding	700	1 ' 1	\$3 \$5	\$2,100 \$3,500	(.	1	ļ .
4H	REMOVAL AND DISPOSAL OF UST	100	су	دد	000,500	\$451,000	1	1
4H 4I	CONTAINMENT SYSTEM (SHEET PILE WALL A)	AD LEVOTA	ECOL	ECLIUSIA (1			CA7 575
41 4J	EXCAVATE SEDIMENT AND RESTORE MUDFLA		L COLL	ECTION)	1	\$1,708,000	1	\$47,575
4,1	· F	A1S	l is	\$5,000	\$5,000	\$3,961,000		1
	Clear and Grubbing Remove and Replace Riprap	1800	l I	\$5,000 \$45	\$5,000	ţ	[!
	Staging/Steam-cleaning area for riprap	1800	cy Is	\$45 \$50,000	\$81,000	ţ	1	1
	Staging/Steam-cleaning area for riprap Steam-cleaning riprap	27300	ls sf	\$50,000 \$15	\$409,500	{	1	l .
]		21300	SI	913	₩40¥,300	(l
	Mudflat and rip-rap sediments	8900	1 1	\$25	2000 600	1		ļ
1	Dedge sediments; clamshell Backfill	9800	cy	\$25 \$15	\$222,500 \$147,000	1		1
	1	9800 9800	су	\$15 \$8	\$147,000	1	}	Į.
1	Grading Compaction	9800	cy cy	\$8 \$3	\$78,400 \$29,400	1	1	1
	Compaction Cofferdam: dimensions 620 lf x 20 ft high	9800 12400	cy sf	\$3 \$15	\$29,400 \$186,000	ļ	,	Į.
1	Cofferdam: dimensions 620 If x 20 ft high River sediments	12400	31	913	\$186,000	}	1	1
	River sediments Dredge sediments: clamshell	2850		\$25	\$71,300	l	1	1
	Cofferdam: dimensions 875 If x 40 ft high	35000	cy sf	\$25 \$20	\$71,300	1	1	
	Disposal of liquid waste from dredging	33000	3I	\$20	\$1,000,000	1	1	
	Disposal of liquid waste from dredging Backfill	3135		\$15	\$1,000,000	1	1	
	Handling	3135	cy	\$15 \$25	\$47,000 \$78,400	1	1	
	Handling Miscellaneous	ددند	су	دعو	910,400	ļ	1	ļ
1	Mobilization/Demobilization	1	ls	\$105,000	\$105,000	1	1	1
1	Mobilization/Demobilization Regulatory Compliance	1	13	\$103,000	\$105,000	1	1	1
1	Regulatory Comphance Miscellaneous] .	1	\$250,000 \$500,000	1	1	1
4K	Miscellaneous PERMEABLE CAP	}			3300,000	6330 000	1	\$4,000
4K		8700		610	Q104 400	\$330,000	1	34,000
	Sand & Gravel Borrow	8700 8700	cy	\$12 \$8	\$104,400		1	
	Grading Compaction	8700 8700	cy	\$8	\$69,600 \$26,100	1	1	1
	Compaction Loam/Topsoil	8700 4100	cy	\$3 \$18	\$26,100 \$73,800		1	1
	Grading and Seeding	4100	cy	\$18	\$73,800	1	}	ĺ
	Monitoring Wells	4100	су	\$1,200	\$20,500	1		
{	Monitoring Weils Miscellaneous	1	CB.	00کبدھ	\$6,000	1		}
1	Annual Maintenance				\$30,000		\$4,000	1
	CHIMINAL INIGHICOLOGIC	<u></u>	<u> </u>		<u></u>		34,000	1

 SUBTOTAL ALTERNATIVE C-4
 \$7,141,000

 ENGINEERING @ 10%
 \$714,100

 CONTINGENCY @ 15%
 \$1,071,150

 TOTAL
 \$8,926,000

PRESENT WORTH (n=30 yrs, i=5%) \$11,774,000

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-5
Cost Summary for Remedial Alternative C-5: Impermeable Cap
Flexible Membrane Liner Option

FEEM No.	COMPONENT	QUANTITY	UNIT	UNIT	EXTENSION	CAPITAL COST	O&M COST (annual)	O&M TOTALS
	CHORT TERM MONITORING (Supple	. 2		***********				
	SHORT-TERM MONITORING (quarter							\$301,900
1	LONG-TERM MONITORING (annually	: yrs 3-30)				# 10.000		\$7 5,600
	DEED RESTRICTIONS		,			\$10,000		
5D	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
5E	WARNING SIGNS					\$1,000		ŀ
	PUBLIC EDUCATION PROGRAM					\$35,000	1	\$ 4,000
5G	EXCAVATION AND DISPOSAL OF C	OURTYARD SO	OIL .			\$617,000		ĺ
5H	REMOVAL AND DISPOSAL OF UST		ļ			\$451,000	<u> </u>	
51	CONTAINMENT SYSTEM (SHEET PI	LE WALL AND	LEACE	IATE CO	LLECTION)	\$1,708,000		\$47,575
5J	EXCAVATE SEDIMENT AND RESTO	RE MUDFLAT	S			\$3,961,000	1	'
5K	IMPERMEABLE CAP (FML)					\$1,513,000		\$40,000
	Subgrade Preparation	48400	sy	\$2	\$96,800	. ,		
	Installation of FML	435600	sf	\$0.75	\$326,700			
	Sand & Gravel Borrow	34200	cy	\$12	\$410,400			
	Compaction	34200	cy	\$ 3	\$102,600			1
	Loam/Topsoil	16100	cy	\$18	\$289,800			
-	Grading and Seeding	16100	cy	\$ 5	\$80,500			1
	Monitoring Wells	5	ca	\$1,200	\$6,000			
	Miscellaneous]	\ \frac{\sqrt{\pi}}{2}	W1,200	\$200,000		1	1
	Annual Maintenance				9200,000		\$40,000	
	Annual Maintenance						\$40,000	

SUBTOTAL ALTERNATIVE C-5 ENGINEERING @ 10% CONTINGENCY @ 15% TOTAL \$8,324,000 \$832,000 \$1,249,000 \$10,405,000

	,
PRESENT WORTH (n=30 yrs, i=5%)	\$13,889,000

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-6 Cost Summary for Remedial Alternative C-6: In Situ Solidification/Stabilization

TEM	COMPONENT	QUANTITY	UNIT	UNIT	EXTENSION		O&M COST	O&Y
No.				COST		COST	(wonust)	TO
6A	 SHORT-TERM MONITORING (quarterly	2 vears)					1	\$301,
6B	LONG-TERM MONITORING (annually: yr:							\$75,600
_	DEED RESTRICTIONS	, ,				\$10,000		4,3,000
	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
6E	WARNING SIGNS					\$1,000		32,500
	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
6G	EXCAVATION AND DISPOSAL OF COU	RTYARD SOIL	ľ		[\$617,000]	J-4,000
	REMOVAL AND DISPOSAL OF UST				-	\$451,000		
6I	STABILIZING WALL		ĺ			\$900,000		
	Mobilization/Demobilization	1	ls	\$60,000	\$60,000	,	İ	
	Sheet pile wall	56000	sf	\$ 15	\$840,000		}	
6J	EXCAVATE SEDIMENT AND RESTORE	MUDFLATS	ļ			\$3,961,000		,
6K	IN SITU STABILIZATION					\$10,434,000		
	Treatability Study	1	ls	\$30,000	\$30,000	.,	1	
	Mobilization/Setup/Decon_/Demob.	1	ls	\$137,500	\$137,500		Ì	1
	Obstruction clearing by dry mixing	73000	cy	\$19	\$1,387,000		}]
	Solidification/Stabilization Process	73000	су	\$62	\$4,526,000		ļ	
	Cement and Admixes	73000	су	\$ 40	\$2,920,000			ļ
	Excavate/remove obstructions	3700	cy	\$8	\$29,600		1	
	Steam-cleaning Obstructions	10000	sf	\$15	\$150,000			
	Relocation of Obstructions as Riprap	185	cy	\$23	\$4,300			
	Regulatory Compliance				\$250,000			
	Miscellaneous				\$1,000,000			
6L	IMPERMEABLE CAP (FML)		1			\$1,513,000		\$40,000

PRESENT WORTH (n=30 yrs, i=5%)	\$25,081,000
TOTAL	\$22,438,000
CONTINGENCY @ 15%	\$2,692,500
ENGINEERING @ 10%	\$1,795,000
SUBTOTAL ALTERNATIVE C-6	\$17,950,000

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-7
Cost Summary for Remedial Alternative C-7: In Situ Solidification/Stabilization with Containment

HEM	COMPONENT	00000000000000000000000000000000000000						
	LUMPOMEN	QUANTITY	UNIT	UNIT	EXTENSION	CAPITAL	O&M COST	O&M
No.				COST		COST	(ennuni)	TOTALS
7A	SHORT-TERM MONTTORING (quarter	ly - 2 years)						\$ 301,900
7B	LONG-TERM MONITORING (annually	yrs 3-30)						\$75,600
7C	DEED RESTRICTIONS					\$10,000		, , , ,
7D .	ACCESS RESTRICTIONS*	•				\$27,900*		\$2,500
7E	WARNING SIGNS					\$1,000		,
7F	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
7G	EXCAVATION AND DISPOSAL OF CO	OURTYARD SO	IL			\$ 617,000		
7H :	REMOVAL AND DISPOSAL OF UST					\$451,000		
71	CONTAINMENT SYSTEM (SHEET PIL	E WALL AND	LEACE	ATE COL	LECTION)	\$1,708,000		\$ 43,475
	Sheet Pile Wall	56000	sf	\$ 15	\$840,000		\$1,000	
	Trenching	3900	су	\$15	\$ 58,500			
	Backfill	6700	су	\$10	\$67,000			
	Compaction	6700	су	\$ 3	\$20,100			
	Manholes	8	ea	\$2,400	\$19,200		\$1,000	
	HDPE Collection Pipe	1800	lf	\$ 40	\$72,000		\$1,000	
	Mobilization/Demobilization	1	ls	\$60,000	\$60,000			
	NAPL Collection and Disposal							
	NAPL Scavanger System	6	. ea	\$9,000	\$54,000	•	\$37,650	
İ	Drums	6	ea	\$25	\$150		\$25	
j	Drum heaters	6	ea	\$200	\$1,200		\$1,200	
1	Concrete containment area	· 6	ea	\$1,000	\$ 6,000		1	
	Disposal of NAPL	25	gal	\$ 16			\$400	
	Electrical	1	ls	\$ 10,000	\$10,000		\$1,200	
	Miscellaneous				\$500,000			
<i>7</i> J	EXCAVATE SEDIMENT AND RESTO	RE MUDFLATS	}		*	\$3,961,000		
	IN SITU STABILIZATION					\$10,434,000		
7L	IMPERMEABLE CAP (FML)					\$1,513,000		\$ 40,000

SUBTOTAL ALTERNATIVE C-7	\$18,758,000
ENGINEERING @ 10%	\$1,876,000
CONTINGENCY @ 15%	\$2,814,000
TOTAL	\$23,448,000

PRESENT V	VORTH (n=30 yrs, i=5%)	\$26,860,000

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-8
Cost Summary for Remedial Alternative C-8: Soil Washing/Containment

TTEM	COMPONENT	QUANTITY	UNIT		EXTENSION		O&M COST	
No.				COST		COST	(anntial)	TOW
	SHORT-TERM MONITORING (quarterly - 2	•]				,	\$301,
	LONG-TERM MONITORING (annually: yrs	3-30)						\$75,600
ľ	DEED RESTRICTIONS		1			\$10,000	ļ	1
8D	ACCESS RESTRICTIONS*		İ	1		\$27,900*		\$2,500
8E	WARNING SIGNS					\$1,000		
8F	PUBLIC EDUCATION PROGRAM		1			\$35,000	ĺ	\$4,000
8G	EXCAVATION AND DISPOSAL OF COUR	TYARD SOIL	l			\$617,000		
8H	REMOVAL AND DISPOSAL OF UST		1	Į.		\$451,000		
81	CONTAINMENT SYSTEM (SHEET PILE W		CHATE	COLLECTION	N)	\$1,708,000		\$43,475
81	EXCAVATE SEDIMENT AND RESTORE M	IUDFLATS				\$3,961,000		
8K	SOIL WASHING - TREATMENT		1			\$5,643,000	•	ı
	20-Ton Crane	1	mo	\$15,000	\$15,000		ĺ	
	Rigging Personnel	1	mo	\$10,000	\$10,000			
	Excavate soils	71000	cy	\$8	\$568,000			
	Temporary Staging	1	ls	\$50,000	\$50,000			
	Soil Conveyance	83000	су	\$1	\$83,000			
	Soil Screening	83000	сy	\$2	\$166,000			
	Decon of Large Debris	50000	sf	\$15	\$750,000			
	Treatment Unit		1		ĺ			
	Bench-scale Treatability	1	ls	\$60,000	\$60,000			
	Design Activities	1	ls	\$10,000	\$10,000		ļ	
	Plant Mob and Start-up	1 .	ls	\$60,000	\$60,000			
	Personnel Training	1	ls	\$50,000	\$50,000	•		
	Plant Lease (50 TPH)	34	wk	\$34,000	\$1,156,000		1	
	Temporary Tankage	38	wk	\$2,500	\$95,000			
	Plant Decon and Demob	1	ls	\$80,000	\$80,000			
	Plant Consumables	1	ls	\$1,700,000	\$1,700,000			
	Plant O&M	38	wk	\$5,000	\$190,000			
	Analytical		i		\$300,000			1
	Permitting		1	Ì	\$300,000			
8L	SOIL WASHING - RESIDUAL TREATMEN	T	ĺ	Į.	,	\$7,317,400		
	Disposal of Waste Stream	300000	gai	\$16	\$4,800,000	0.,00.,100	ľ	
	Ex-Situ S/S of Contaminated Residual				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Mob/Setup/Decon/Demob	1	ls	\$35,000	\$35,000			ļ
	Loader	20000	су	\$3	\$60,000		l	
	Mixing Equipment and Labor	20000	су	\$30	\$600,000			Ì
	Cement and Admixes	20000	су	\$40	\$800,000]
	Forms	93600	sfca	\$4	\$374,400			
	Staging Area/Contaminated Fines	1	ls	\$50,000	\$50,000		į	ļ
	Handling of Treated Material	1 7	mo	\$10,000	\$70,000			
	Haul/Dump Treated Material	26000	су	\$3	\$78,000			1
	Regulatory Compliance		"	1	\$200,000			1
	Miscellaneous				\$250,000]
8M	REPLACEMENT OF TREATED SOILS			l	1 2230,000	\$1,071,000	ļ	ļ
-412	Load, Haul and Dump Clean Soil	63000	су	\$6	\$378,000	31,0/1,000		
	Grading	63000	cy	\$8	\$504,000			
	Compaction	63000	1 '	\$3	\$189,000	1	1	
8N	IMPERMEABLE CAP (FML)	03000	су	93	3103,000	\$1,513,000		\$40,000
-2.	CLIVILLE OF IL (LIVILE)	L	<u> </u>	1		31,313,000	1	\$40,000

SUBTOTAL ALTERNATIVE C-8
ENGINEERING @ 10%
CONTINGENCY @ 15%

CONTINGENCY @ 15% \$3,353,000

TOTAL \$27,944,000

PRESENT WORTH (n=30 yrs, i=5%)

\$31,356,000

\$22,355,000

\$2,236,000

6698/haz/revision/work/altc8.xls

9/23/94 11:33 AM

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-9
Cost Sumary for Remedial Alternative C-9: On site Incineration

HEM	COMPONENT	QUARTETTY	UNIT	UNIT	EXTENSION	CAPITAL	O&M COST	O&M
No.				COST		COST		TOTALS
9A	SHORT-TERM MONITORING (quarter	ly - 2 years)						\$301,900
9B	LONG-TERM MONITORING (annually					,		\$75,600
9C	DEED RESTRICTIONS					\$10,000		
9D	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
9E	WARNING SIGNS				·	\$1,000		
9F	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
9 G .	STABILIZING WALL					\$900,000		
9H	EXCAVATION AND DISPOSAL OF CO	OURTYARD SO)IL			\$ 617,000		
9I	REMOVAL AND DISPOSAL OF UST					\$451,000		
9J	EXCAVATE SEDIMENT AND RESTO	RE MUDFLATS	3			\$3,961,000		'
9K	ON SITE INCINERATION		l			\$33,003,300		1
1	Mobilization/Setup/Demobilization	1	ls	\$10,000,000	\$10,000,000			
	Excavate Soils	83,000	су	\$8	\$664,000	•		
	Incineration	132,800	ton	\$120	\$15,936,000			
1	Compaction	83,000	су	\$3	\$249,000			
	Steamcleaning Obstructions	10,000	sf	\$ 15	\$150,000			
	Relocate Obstructions as Riprap	185	су	\$2 3	\$ 4,300			
	Regulatory Compliance	1	ls	\$3,000,000	\$3,000,000			
	Miscellaneous	1	, ls	\$3,000,000	\$3,000,000			
9L	REPLACEMENT OF TREATED SOILS	•		_		\$1,411,000		
	Load, Haul and Dump Soil	83,000	су	\$ 6	\$498,000		· ·	
1	Grading	83,000	су	\$8	\$664,000			
	Compaction	83,000	су	\$ 3	\$249,000			
9M	IMPERMEABLE CAP (FML)		1			\$1,513,000		\$40,000

SUBTOTAL ALTERNATIVE C-9	\$ 41,930,000
ENGINEERING @ 5%	\$2,096,500
CONTINGENCY @ 15%	\$ 6,289,500
TOTAL	\$50,316,000

1			
ı	PRESENT WORTH (n=30 yrs, i=5%)	\$52,959,000
ı			

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-10 Cost Summary for Remedial Alternative C-10: On site Incineration and Containment

PTEM No.	COMPONENT	QUANTITY	UNIT	UNIT COST	EXTENSION	CAPITAL COST	O&M COST (#nnusl)	TO
10A	SHORT-TERM MONITORING (quarter)	ly - 2 years)						\$301
10B	LONG-TERM MONITORING (annually:	yrs 3-30)						\$75,600
10C	DEED RESTRICTIONS					\$10,000		·
10D	ACCESS RESTRICTIONS*				!	\$27,900*	i	\$2,500
10E	WARNING SIGNS					\$1,000		
10F	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
10G	EXCAVATION AND DISPOSAL OF CO	OURTYARD S	OIL	ł		\$617,000		
10H	REMOVAL AND DISPOSAL OF UST			ł		\$451,000		
101	CONTAINMENT SYSTEM (SHEET PII	E WALL ANI	D LEAC	HATE COLLE	CTION)	\$1,708,000		\$ 43,475
10J	EXCAVATE SEDIMENT AND RESTO	RE MUDFLAT	S		1	\$3,961,000		
10K	ON SITE INCINERATION		1			\$33,003,300		
10L	REPLACEMENT OF TREATED SOILS					\$1,411,000		
10M	IMPERMEABLE CAP (FML)					\$1,513,000	'	\$ 40,000

SUBTOTAL ALTERNATIVE C-10 \$42,738,000 **ENGINEERING @ 5%** \$2,136,900 CONTINGENCY @ 15% \$6,410,700 TOTAL \$51,286,000

	·····
DDFCGNT WODTH (! ! ! !	CEA COO 000
PRESENT WORTH (n=30 yrs, i=5%)	\$54,698,000
	· · · · · · · · · · · · · · · · · · ·

^{*} Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

TABLE 3-11
Cost Summary for Remedial Alternative C-11: Off-site Disposal (TSDF)

ITEM	COMPONENT	QUANTITY	UNIT	UNIT	EXTENSION	CAPITAL	O&M COST	
No.				COS:		COSI	(annual)	TOTALS
1	SHORT-TERM MONITORING (quarte	• •			1			\$301,900
11B	LONG-TERM MONITORING (annual)	y: yrs 3-30)						\$75,600
11C	DEED RESTRICTIONS	1			,	\$10,000		
11D	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
11E	WARNING SIGNS					\$1,000		·
11F	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
11G	STABILIZING WALL					\$900,000		
11H	EXCAVATION AND DISPOSAL OF (COURTYARD	SOIL			\$617,000		
11I	REMOVAL AND DISPOSAL OF UST		1			\$451,000		
11J	EXCAVATE SEDIMENT AND RESTO	ORE MUDFLA	TS			\$3,961,000	į	
11K	OFF-SITE DISPOSAL (TSDF)					\$65,559,000		
	Excavation	71000	су	\$8	\$568,000			
1	Transportation	107900	tons	\$125	\$13,488,000			
	Disposal	107900	tons	\$475	\$51,253,000			,
	Permitting of disposal		l		\$250,000			
llL	REPLACEMENT OF SOILS		1		1	\$1,491,000		
}	Backfill	71000	cv	\$10	\$710,000			
	Grading	71000	cy	\$8	\$568,000		·	
	Compaction	71000	cy	\$3	\$213,000			
11M	IMPERMEABLE CAP (FML)				1 2 3 3 4 5 5	\$1,513,000		\$40,000
•••••		1	1	1	1	1 -1,5 15,000	ļ	4.0,000

SUBTOTAL ALTERNATIVE C-11	 \$74,566,000
ENGINEERING @ 5%	\$3,728,300
CONTINGENCY @ 10%	\$7,456,600
TOTAL	\$85,751,000

PRESENT WORTH (n=30	yrs, i=5%)	\$88,394,000

* Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

Page 1 of 1

TABLE 3-12
Cost Summary for Remedial Alternative C-12: Off-site Disposal (TSDF)

			Cont	ainment	<u> </u>			A
ITEM No.	COMPONENT	QUANTITY	UNIT	UNIT	EXTENSION	CAPITAL COST	O&M COST (annual)	O& TO'
	SHORT-TERM MONITORING (quarter	lv - 2 vears)						\$301,500
	LONG-TERM MONITORING (annually	• • •					}	\$75,600
	DEED RESTRICTIONS					\$10,000	İ	475,000
	ACCESS RESTRICTIONS*					\$27,900*		\$2,500
12E	WARNING SIGNS					\$1,000		, , , , , , , , , , , , , , , , , , ,
12F	PUBLIC EDUCATION PROGRAM					\$35,000		\$4,000
12G	EXCAVATION AND DISPOSAL OF C	OURTYARD	SOIL			\$617,000	ĺ	
12H	REMOVAL AND DISPOSAL OF UST	,				\$451,000		
121	CONTAINMENT SYSTEM (SHEET PI	LE WALL AN	DLEAG	CHATE (COLLECTION)	\$1,708,000		\$43,475
12J	EXCAVATE SEDIMENT AND RESTO	RE MUDFLA	TS			\$3,961,000		
12K	OFF-SITE DISPOSAL (TSDF)					\$65,559,000		
	Excavation	71000	су	\$8	\$568,000			
	Transportation	107900	су	\$125	\$13,488,000			
	Disposal	107900	су	\$475	\$51,253,000			
	Permitting of disposal				\$250,000			
12L	REPLACEMENT OF SOILS]	}			\$1,491,000		
12M	IMPERMEABLE CAP (FML)					\$1,513,000		\$40,000

SUBTOTAL ALTERNATIVE C-12	ı	\$75,374,000
ENGINEERING @ 5%		\$3,769,000
CONTINGENCY @ 10%		\$7,537,000
TOTAL		\$86,680,000

PRESENT WORTH (n=30 yrs, i=5%)	\$90,092,000
<u> </u>	

* Fencing will be replaced in 15 years. Total shown is present worth of replacement cost.

DRAFT

Table 4-6 Comparative Analysis of Retained Alternatives

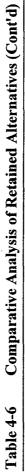
Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Overall Protection of Human Health and the Environment	No additional protection of human health and environment. Risks would continue to exist at the site.	Would achieve overall protection of human health and environment.	Refer to C-5.`	Refer to C-5.	Refer to C-5.
Compliance with ARARs/TBCs					
Chemical-Specific	Surface Water - Will not comply. The release of LNAPL from affected soil and sediment to the surface water would continue.	Surface Water - Will generally comply. Short-term non- compliance would be reduced by erosion and sedimentation controls, and working at low tide when possible.	Surface Water - Refer to C-5.	Surface Water - Refer to C-5.	Surface Water - Refer to C-5.
	Groundwater - Will not comply. No additional protection of groundwater resources would be provided.	Groundwater - Will generally comply. Impact to groundwater will be essentially removed by implementation of the impermeable cap.	<i>Groundwater</i> - Refer to C-5	<i>Groundwater</i> - Refer to C-5	<i>Groundwater -</i> Refer to C-5

Comparative Analysis of Retained Alternatives (Cont'd) Table 4-6

Criteria	C-1 No Action	C-S Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Compliance with ARARs/TBCs (Cont'd)					
Location-Specific	Floodplains - Will comply with floodplains ARAR. No remedial activities would take place within the 100 year floodplain.	Floodplains - Will not comply with floodplains ARAR. A variance would be required for remedial activities to occur within the 100 year floodplain. Other long-term and shortterm compliance issues that may arise will mirror those addressed under the chemicalspecific surface water ARAR.	Floodplains - Refer to C-5	Floodplains - Refer to C-5	Floodplains - Refer to C-5
1	Property Lines - Will comply with the Property Lines ARAR. No remedial activities would take place within the 50 ft. buffer zone between a property line and remedial activity.	Property Lines - Will not comply with Property Lines ARAR. A variance would be required for remedial activities to occur within the 50 ft. buffer zone between a property line and remedial activity.	Property Lines - Refer to C-5	Property Lines - Refer to C-5	Property Lines - Refer to C-5

6698/huz/revision/work/

	·										
C-12 Off-Site Disposal/ Containment		Wetlands - Refer to C-5		•			Wildlife - Refer to C-5				
C-8 Soil Washing/ Containment		Wetlands - Refer to C-5	·	-		·	Wildlife - Refer to C-5		,	·	*
C-7 In-Situ Stabilization/ Containment		Wetlands - Refer to C-5	÷		·		Wildlife - Refer to C-5				
C-S Impermeable Cap/ Containment System		Wetlands - Will generally comply with Wetlands ARARs.	Remedial activities would encroach upon wetlands and river thus	requiring a variance. Other long-term and	short-term compliance issues that may arise will	muror mose addressed under chemical-specific surface water ARARs.	Wildlife - Will generally comply with Wildlife ARARs. Long-term and	short-term non- compliance issues that	may arise will mirror those addressed under	the chemical-specific surface waters ARARs.	
C-1 No Action		Wetlands - Will comply with Wetlands ARARs.	,				Wildlife - Will not comply with Wildlife ARARs. This	alternative does not contain any mitigative or	preventive measures that would protect native	biota from the effects of the contamination from	the site.
Criteria	Compliance with ARARs/TBCs (Cont'd)	Location-Specific (Cont'd)									•


Table 4-6 Comparative Analysis of Retained Alternatives (Cont'd)

Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Compliance with ARARs/TBCs (cont'd)					
Action-Specific	Excavation - Will comply with Excavation ARARs.	Excavation - Will comply with Excavation ARARs with assistance of additional mitigative measures. Short-term non-compliance issues may arise while implementing remedial activities.	Excavation - Refer to C-5	Excavation - Refer to C-5	Excavation - Refer to C-5
	On-Site Treatment -Will comply with On-Site Treatment ARARs.	On-Site Treatment -Will comply with On-Site Treatment ARARs with assistance of additional mitigative measures. Short-term non-compliance issues may arise while implementing remedial activities.	On-Site Treatment - Refer to C-5	On-Site Treatment - Refer to C-5	On-Site Treatment - Refer to C-5

Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Long-Term Effectiveness and Permanence					
Magnitude of residual risk	Long-term risks remain as under present condition.	Capping reduces risk related to exposure to waste material. Containment system controls LNAPL migration and migration of other contaminants off site.	Treatment reduces risks related to exposure to waste material and total volume of LNAPL capable of migration to collection system. Containment system controls residual LNAPL migration and migration of other contaminants off site.	Refer to C-7	Refer to C-7
Adequacy and Reliability of Controls	No controls over remaining contamination. No reliability.	Impermeable cap is a reliable technology which would require annual maintenance.	In-situ stabilization has been successfully performed at several NPL sites.	Soil washing has been successfully performed at NPL sites.	Off-site disposal is a reliable technology.
	•	Containment and leachate collection system are reliable technologies which would require annual maintenance.	Containment and leachate collection systems are reliable technologies which would require annual maintenance.	Containment and leachate collection systems are reliable technologies which would require annual maintenance.	Containment and leachate collection systems are reliable technologies which would require annual maintenance.

Comparative Analysis of Retained Alternatives (Cont'd) Table 4-6

Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Reduction of Toxicity, Mobility, or Volume Through Treatment					
Degree of expected reduction in toxicity, mobility or volume through treatment	No treatment will occur; therefore, no reduction of toxicity, mobility, or volume will occur.	No treatment will occur. Mobility will be reduced by the containment system. Some volume	Toxicity and mobility will be reduced by stabilization. Mobility of residual contami-	Toxicity, mobility and volume will be reduced by this alternative. The mobility of residual	No treatment will occur on site. The mobility of the contaminated material will be reduced
		reduction will occur with the LNAPL collection system, removal of the UST and the courtyard soil.	nation will be further reduced by the containment system.	contamination will be further reduced by the containment system.	by off-site disposal. Mobility of residual. contamination will be further reduced by the containment system.
Degree to which treatment is irreversible	No treatment	No treatment	Irreversible	Irreversible	No treatment will occur on site. Dependent upon type of final treatment and/or disposal
Type and quantity of treatment residual	No treatment	No treatment	Very large quantity of concrete-like monolithic residual.	Moderate quantity concrete-like monolithic residual.	No treatment will occur on site. Dependent upon type of final treatment and/or disposal.
Statutory preference for treatment	Does not satisfy.	Does not satisfy.	Would satisfy preference.	Would satisfy preference.	Would not satisfy preference, treatment or disposal would occur off site.

6698/haz/revision/work/sampdoc

Table 4-6 Comparative Analysis of Retained Alternatives (Cont'd)

Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Short-Term Effectiveness					
Protection of community during remedial action	High short-term effectiveness	Moderate short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures and air monitoring would be implemented.	Moderate short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures and air monitoring would be implemented.	Moderate short-term effectiveness. Adverse short-tern impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures and air monitoring would be implemented.	Low short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures and air monitoring would be implemented.
Protection of workers during remedial actions	High short-term effectiveness	Moderate short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures, air monitoring and personal protection equipment would be implemented.	Moderate short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures, air monitoring and personal protection equipment would be implemented.	Moderate short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures, air monitoring and personal protection equipment would be implemented.	Low short-term effectiveness. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures, air monitoring and personal protection equipment would be implemented.
Environmental Impact	High short-term effectiveness. Allows continued release of contaminants into the environment. No adverse environmental impacts during implementation.	Moderate short-term effectiveness. Excavation of contaminated mudflat and river sediment would have minor short-term impact on river and wetlands.	Moderate short-term effectiveness. Excavation of contaminated mudflat and river sediment would have minor short-term impact on river and wetlands.	Moderate short-term effectiveness. Excavation of contaminated mudflat and river sediment would have minor short-term impact on river and wetlands.	Low short-term effectiveness. Excavation of contaminated mudflat and river sediment would have minor short- term impact on river and wetlands.

Comparative Analysis of Retained Alternatives (Cont'd) Table 4-6

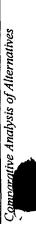
Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Implementability Protection of community during remedial action	High short-term effectiveness	Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control measures and air	Refer to C-5	Refer to C-5	Refer to C-5
Protection of workers during remedial actions	High short-term effectiveness	monitoring would be implemented. Adverse short-term impacts may occur from the release of VOCs and fugitive dust during excavation. Dust control	Refer to C-5	Refer to C-5	Refer to C-5
Environmental Impact	Allows continued release of contaminants into the environment. No adverse environmental impacts during implementation.	measures, air monitoring and personal protection equipment would be implemented Excavation of contaminated mudflat and river sediment would have minor shortterm impact on river and wetlands.	Refer to C-5	Refer to C-5	Refer to C-5

6698/haz/revision/work/

DRAFT

Table 4-6 Comparative Analysis of Retained Alternatives (Cont'd)

Criteria	C-1 No Action	C-5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Implementability (Cont'd)					
Technical Feasibility Ability to construct	Facu	Facu	Moderate to difficult	Difficult	Moderate
and operate technologies	. (, , , , , , , , , , , , , , , , , ,	. (ст.)			HOGGI GIC.
Reliability of technology	None.	Moderate.	Moderate.	Moderate.	Moderate.
Ease of undertaking additional remedial action, if necessary	Easy.	Easy.	Difficult.	Easy.	Easy.
Monitoring consideration	Required.	Required.	Required	Required	Required
Administrative Feasibility				,	
Coordination with other agencies	Will require coordination between EPA and PADER.	Will require coordination among EPA, PADER, and the	Will require coordination among EPA, PADER, and the	Will require coordination among EPA, PADER, and the	Will require coordination among EPA, PADER, and the
		Army Corps of Engineers.	Army Corps of Engineers.	Army Corps of Engineers.	Army Corps of Engineers.
Availability of Services and Materials	Readily available.	Readily available.	Readily available.	Several vendors are available.	Several disposal facilities available.


Table 4-6 Comparative Analysis of Retained Alternatives (Cont'd)

Criteria	C-1 No Action	C.5 Impermeable Cap/ Containment System	C-7 In-Situ Stabilization/ Containment	C-8 Soil Washing/ Containment	C-12 Off-Site Disposal/ Containment
Cost					
Capital Cost		\$10,405,000	\$23,448,000	\$27,944,000	\$86,680,000
Operation and Maintenance ¹	\$87,000	\$195,000	\$190,000	\$190,000	\$182,000
Present Worth	\$1,821,000	\$13,889,000	\$26,860,000	\$31,356,000	\$90,092,000

Operation and Maintenance values listed represent annual costs for years 3 through 30. Costs for years 1 and 2 would be greater by \$260,000, due to quarterly rather than annual monitoring.

6698/haz/revision/work

Appendix A

196 Baker Avenue Concord, MA 01742

DATE:

April 7, 1994

TO: _

Cottman Avenue Technical Committee

FROM:

Peter Swinick, Joseph Higgins

SUBJECT:

Evaluation of Recoverable Oil at Metal Bank/Cottman Avenue Site

Project Number 6698-100

The purpose of this memo is to present the results of our evaluation of the presence of recoverable oil in the subsurface at the Cottman Avenue site. For this evaluation, we reviewed available site background information, field measurements, historical volume estimations of recovered oil, and groundwater extraction/treatment history.

Background

The Metal Bank/Cottman Avenue national Priorities List Site is located at the corner of Cottman Avenue and Milnor Street in an industrial area of northeastern Philadelphia, Pennsylvania. The site is bordered by Cottman Avenue on the west, Milnor Street on the north, Hancock Paper Company and Morris Iron and Steel Company on the east, and the Delaware River on the south. To the west of Cottman Avenue is St. Vincent's School. A City of Philadelphia stormwater outfall is located at the southern end of Cottman Avenue. This outfall discharges onto a mud flat area which is immediately adjacent to the western boundary of the site.

The site property consists of two areas: the former scrap metal recovery area, encompassing approximately six acres on the southern portion of the property, and the building area, located on the northern portion of the property. The building area near Cottman Avenue includes six buildings. Site access is controlled by locked buildings and a six-foot-high fence along all sites of the southern portion of the site, except for the portion bordering the river.

Historical information on past site usage indicates that, from 1968 to 1972, U.C.O.-M.B.A., Inc., formerly known as Metal Bank of America, Inc. ("Metal Bank"), operated a metal reclaiming facility on the site. An underground storage tank at the southern end of the site was associated with this operation and is believed to have been the source of releases of oil into the subsurface environment at the site.

The topography of the site has been altered by filling; fill materials ranging up to eighteen feet in thickness covers the site. Based upon subsurface investigations to date, the surficial fill consists of one to three feet of silty sand and gravel which was deposited as capping/grading material over the southern portion of the site. The intermediate fill consists of five to fifteen feet of imported fill

6698/haz/mcott

reportedly deposited between 1950 and 1979. Explorations to date reveal that this fill contains sand and gravel with varying amounts of trash, debris and silt. Black staining and petroleum odors have been noted during subsurface explorations into this fill unit.

Delaware River alluvial deposits are believed to underlie the fill at the site. Mud flat sediments adjacent to the site consists of fine-grained silty sand with varying amounts of clay and vegetative material/debris.

The site came to the attention of the U.S. Coast Guard (USCG) in 1972, when oil was observed to be seeping from the southwestern bank of the site into the Delaware River. Laboratory analysis of the oil by the Environmental Protection Agency (EPA) did not detect polychlorinated biphenyl compounds (PCBs) at the time. The USCG requires the site owner to contain the slick and improve scrap metal management practices. In 1977, improved technology for laboratory analysis revealed PCBs in the original 1972 oil samples and in soil samples collected in 1977. The detection of PCBs in 1977 prompted studies by several consultants for the regulatory agencies and site owners.

Past action at the site has included pumping and treatment of groundwater to remove oil and PCBs. These recovery operations were reportedly terminated in accordance with a judicial order on June 12, 1989. Since that time, the recovery wells have been permanently closed, the oil recovery system dismantled and removed, and the area covered with fill. Approximately 80 percent of the site has been regraded and seeded. A concrete pad area and the southwestern portion of the site adjacent to the river and mud flat were reportedly regraded and seeded in early 1990.

Investigation and Remediation History

In 1977, three monitoring wells were installed at the site to evaluate the presence of oil in the subsurface. Because oil was detected in the three wells, Roy F. Weston (Weston) installed nineteen additional monitoring wells in 1978 to assist in determining the nature and extent of the oil.

Based on observations and measurements from these wells, Weston estimated that there were 21,000 gallons of oil in the subsurface. Weston later revised this figure to 16,000 gallons of oil in 1980. Weston assumed that 75% (or 12,000 gallons) of this volume of oil would be recoverable. A groundwater/oil recovery and treatment system consisting of 3 recovery wells, an oil/water separator, carbon treatment units, and a waste oil storage tank operated from 1981 to 1989. Groundwater/oil recovery consisted of a groundwater depression pump discharging to the treatment system and an oil pump discharging directly to an above ground holding tank. Initially the system flow rate was approximately 10,000 gallons per day (approximately 7 gallons per

BCM, March 1991. "Work Plan for Remedial Investigation/Feasibility Study".

minute), year round. The system was modified in September 1982 to recharge the treated effluent to the groundwater in an attempt to flush oil from the subsurface soils. Beginning in the winter of 1984-85, the system was shut down during winter months due to treatment difficulties associated with colder temperatures.

By November 1982, the system had collected 3,125 gallons of oil. Over four year later, a total of 4,144 gallons of oil (or an additional 1,019 gallons) were reportedly collected. These measurements indicate that the recovery of oil was continually decreasing over time. In a final evaluation report of Remedial Investigation/Feasibility Study (RI/FS) documents by NUS Corp. for the EPA dated August 1987, NUS noted that the system was collecting less than one gallon of oil per day of operation and there were no longer releases of oil to the river from the site. As described in a 1989 letter form the EPA to Metal Bank's legal counsel, recovery well #1 oil thickness measurements before and after winter shutdown further reflects decreasing amounts of recoverable oil over time. Apparently, oil was not detected in recovery wells #2 and #3 shortly after start-up of the recovery system. A table of this data is presented below.

Oil Thickness Associated with Winter Shut-downs

<u>inter shut</u> -	-down*	-	Spring start-u	<u>ıp</u>	
Date	Recovery Well #	Oil Thickness	Date	Recovery Well #	Oil Thickness
12/10/84	1	1/4"	3/13/85	1	3"
12/13/85	1	1/2"	4/10/86	1	3 1/4"
12/19/86	1	1/8"	3/16/87	1	1/4"
12/18/87	1	N.D.	3/16/88	1	3/4"

Although the oil recovery system operated until June, 1989, the volume of oil collected from the subsurface after the last reported amount of 4,144 gallons in 1986 was not found in the site documents reviewed.

Recoverable Product Evaluation

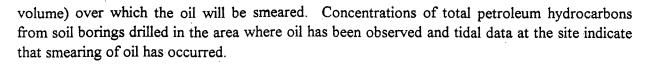
A 1989 report from Tetra Tech, Inc., another consultant to the EPA, modeled the radius of influence for the groundwater/oil recovery system at the site and concluded that the location of the recovery wells, given the estimated radii of influence, did not reach all areas potentially containing subsurface oil. This model, however, assumed a "homogenous, flat lying aquifer,

System continued to operate through winter season of 1988-89.

which varies considerably from the actual site conditions". The potential for preferential flow paths with higher permeabilities at this site due to the heterogeneous nature of the fill material may allow recovery wells to have a greater influence on the oil layer. Furthermore, the recovery wells were located in areas where oil was detected, at least during initial extraction/treatment, and these wells actually captured at least 4,144 gallons.

Although groundwater seeps with an oil sheen have recently been observed emanating from the southwest bank of the site, this does not necessarily indicate that recoverable oil exists in the subsurface. In May and June of 1992, HMM personnel detected oil in three monitoring wells using an electronic interface probe. Apparent oil thickness ranged from less than 0.01 feet to 0.29 feet. However, HMM personnel were not able to collect an oil sample from any of these wells because only sheens or droplets of oil were observed. When the wells were purged for groundwater sampling, only a thin sheen was noted in the purge water from these wells. Small accumulations of oil may continue to be detected in these and other wells due to fluctuations in the groundwater.

The oil thickness measured in a monitoring well (called the apparent thickness) is usually greater than the actual, or true, thickness, of oil within the subsurface. The oil within the subsurface will be perched on top of the capillary fringe. The capillary fringe is the height above the saturated zone (above the water table) in which water is held by tension within the pores of the soil. During the installation of monitoring wells (or other subsurface investigations), the capillary fringe is destroyed, and oil will migrate down into the well and rest on top of the water in the well. The oil then depresses the water table in the well due to its density, resulting in a greater apparent thickness of oil measured in the well than actually exists in the formation. At the Cottman Avenue site, it is expected that the oil thickness in the wells would be greater than the true thickness in the formation.



The Weston subsurface oil estimates did not take into account the different apparent and true product thicknesses. Based on a capillary fringe height of 2 to 6 inches and a specific gravity of the oil of 0.797 (Weston, 1980), measured product thickness can be corrected for water level depression. When product thicknesses are corrected, the calculated amount of oil in the subsurface decreases from 16,000 gallons to 12,700 gallons.

The height of water table fluctuation due to seasonal or tidal variations will also have an effect on measured oil thickness and amount of recoverable oil. As the groundwater table declines, the oil layer above it will also move downward, and locally may flow preferentially into the well (i.e., path of least resistance) causing an increase in measured or apparent oil thickness. Conversely, as the water table rises, a thinner oil layer will be observed.

Constant water table fluctuations will cause oil to become trapped within the soil pores below the oil/water interface. The continued fluctuation of the groundwater level will also cause a staining or smearing of the oil onto "clean" soil, rendering oil recoverability difficult. The greater the height and frequency of the fluctuation, the greater the subsurface thickness (and therefore

The type of soil in the formation will impact the amount of released product that is recoverable in the subsurface. Immobile product in the water table capillary zone, in the soil pore space and trapped by soil adsorptive effects are considered residual, unrecoverable product. The percentage of product that will drain and can be recovered under the influence of gravity, termed the specific yield, is dependent upon the flow characteristics of oil and the hydrogeologic characteristics of the formation. Typical values for specific yield range from 5% to 30%² which is much lower than Weston's specific yield estimate of 75%. Using a conservative specific yield of 30% and the correct spill volume of 12,700 gallons, the amount of recoverable product would be approximately 3,800 gallons.

Another method of estimating the amount of recoverable product is to estimate the amount of product the subsurface can retain in the soil matrix. The typical residual saturation value from literature² given the site soil type is 0.15 to 0.20 gallons of oil retention capacity per cubic foot of soil. Based on an areal extent of oil of 44,120 ft² as shown on the 1980 Weston report, and assuming the thickness of the product-saturated soil to be the thickness of the product layer (0.77 ft.) plus a 0.5 foot smear zone (which is conservative based on soil boring data collected at the site), an estimated 8,400 to 11,000 gallons of product could be retained in the on-site soils. Again using the corrected spill volume of 12,700 gallons, an estimated 1,500 to 4,300 gallons of product would be recoverable.

According to periodic operational reports, the volume of oil collected in 5-1/2 (out of 8) years of operation was approximately 4,200 gallons, which is consistent with the amount of recoverable product predicted by the two methods presented above. The decline in oil recovery efficiency after 5-1/2 years of operation and the sporadic observation of oil in the wells and sheens on the seeps to the Delaware River further indicate that the majority of recoverable oil was collected by the groundwater extraction/treatment system.

Conclusion

Based on the information reviewed for the Cottman Avenue site, although oil has recently been observed in the on-site monitoring wells, it is our opinion that much, if not all, of the subsurface residual oil is not recoverable. The former groundwater/oil extraction and treatment system operated from 1981 to 1989 and recovered an excess of 4,000 gallons of oil. Estimates by others indicate that 16,000 to 21,000 gallons of oil were present in the subsurface. However, HMM's review of those calculations indicate that corrections were not applied to the apparent, or

Testa, S.M. and M.T. Paczkowski, 1989. Volume determination and recoverability of free hydrocarbon.
Groundwater Monitoring Review. Winter, pp. 120-128.

measured product thickness in the monitoring wells and the calculated volume of oil should be approximately 12,700 gallons. HMM's research and experience indicates that up to 4,300 gallons of oil in the subsurface is recoverable at the Cottman Avenue site. Our research also indicated that the soil in the zone of separate phase product will potentially hold between 8,400 and 11,00 gallons of residual unrecoverable oil.

The presence of residual unrecoverable oil in the subsurface is reinforced by recent measurements in monitoring wells which indicate that only a sheen of oil is present, and by field observations of sheens and droplets on groundwater samples collected from several monitoring wells. It is our experience that recovery of oil from the groundwater table is generally not feasible when the apparent thickness of oil is less than approximately one inch.

Project: Cottman Avenue

Project #: 6698-402 Date:

5/18/94

Subject:

Oil Saturation in Soils (TPH)

Objective: Oil Saturation Value (OSV) in mg/Kg Total Petroleum Hydrocarbons (TPH)

Given:

Density of Soil (D) = 150 #/ft3

Specific Gravity of PCB laddened Minerail Oils (s) = 1.1

Residual Saturation Value of Oil Retention Capacity (ORC) = 0.20 gallons/ft3

Conversion Factor Kv = 3785 ml/gallom Conversion Factor Kw = 454 grams/pounds

Solution: Grams of Oil in Soil (Go) = ORC * Kv * s

Go = 0.20 gallon/ft3 * 3785 ml/gallon * 1.1 g/ml

Go =

833 grams of oil/ft3

Grams of Soil per ft3 (Gs) = D * Kw

Gs = 150 # / ft3 * 454 grams / #

Gs =

68,100 grams of Soil

OSV = (Go *1000mg/g) / (Gs * 1Kg/1000 g)

OSV = 833 *1000/68100 * 0.001

OSV=

12,232 mg/Kg (TPH)

If ORC = 0.15 gallons/ft3 of Soil

Then OSV = (12232/0.20)*0.15

OSV = .

9,174 mg/Kg (TPH)